Showing posts with label SOP. Show all posts
Showing posts with label SOP. Show all posts

Logical Expressions & Their Equivalent Forms Part 2 (Solved Examples | Step By Step Explanation)

 LOGICAL EXPRESSIONS AND THEIR EQUIVALENT FORMS: (PART 2)

In this tutorial, I am going to provide solved examples with all the steps on the topics given in the outline. These topics are explained in detail in the previous tutorial, I discussed the following topics in detail. Please check out the first part here.

OUTLINE:

Solved examples on the following topics:

  • Minterms

  • Maxterms

  • SOP  (Sum of Products)

  • POS (Product Of Sum)

  • Evaluation of complement of a function with the help of canonical forms (sum of minterms and product of maxterms)

  • POS to standard POS

  • SOP to standard SOP

  • Conversion between standard forms; From SOP to POS and POS to SOP


EXAMPLE 1: Express the function in sum of minterms and product of maxterms (XY + Z)(Y + XZ)


Step 1: Draw ruth table along with sum of minterms and product of maxterms.


X

Y

Z

Output

Minterms

Maxterms

0

0

0

0

X’Y’Z’   m0

X +Y +Z    M0

0

0

1

0

X’Y’Z    m1

X +Y +Z’    M1

0

1

0

0

X’YZ’    m2

X +Y’ +Z    M2

0

1

1

1

X’YZ     m3

X +Y’ +Z’    M3

1

0

0

0

XY’Z’    m4

X’ +Y +Z    M4

1

0

1

1

XY’Z     m5

X’ +Y +Z’    M5

1

1

0

1

XYZ’     m6

X’ +Y’ +Z    M6

1

1

1

1

XYZ     m7

X’ +Y’ +Z’   M7



Step 2: Express the given function in sum of minterms as:

F = X’YZ + XY’Z + XYZ’ + XYZ


F = m+ m5 +  m6 + m7F = ∑ (3, 5, 6, 7)



Step 3: Express the given function in product of maxterms as:


F = (X +Y +Z)(X +Y +Z’)(X +Y’ +Z)(X’ +Y +Z)

F = M0 . M1 . M2 . M4

F( X, Y, Z) = π (0, 1, 2, 4)


EXAMPLE 2:

Express the function in sum of minterms and product of maxterms (X’ + Y)(Y’ + Z)


Step 1: Draw ruth table along with sum of minterms and product of maxterms.


X

Y

Z

Output

Minterms

Maxterms

0

0

0

1

X’Y’Z’   m0

X + Y + Z    M0

0

0

1

1

X’Y’Z    m1

X + Y + Z’    M1

0

1

0

0

X’YZ’    m2

X + Y’ + Z    M2

0

1

1

1

X’YZ     m3

X + Y’ + Z’    M3

1

0

0

0

XY’Z’    m4

X’ + Y + Z    M4

1

0

1

0

XY’Z     m5

X’ + Y + Z’    M5

1

1

0

0

XYZ’     m6

X’ + Y’ + Z    M6

1

1

1

1

XYZ     m7

X’ + Y’ + Z’   M7



Step 2: Express the given function in sum of minterms as:


F = X’Y’Z’ + X’Y’Z + X’YZ + XYZ

F = m0 ,+  m1 +  m3 +  m7

F = ∑ (0, 1, 3, 7)


Step 3: Express the given function in product of maxterms as:


F = (X + Y’ + Z)(X’ + Y +Z)(X’ + Y +Z’)(X’ + Y’ +Z)

F = M2 M4 M5 M6

F( X, Y, Z) = π (2, 4, 5, 6)


EXAMPLE 3:

Express the function in sum of minterms and product of maxterms Y’Z + WXY’ +WXZ’ +W’X’Z


Step 1: Draw ruth table along with sum of minterms and product of maxterms.


W

X

Y

Z

Output

Minterms

Maxterms

0

0

0

0

0

W’X’Y’Z’    m0

W + X +Y +Z    M0

0

0

0

1

1

W’X’Y’Z    m1

W + X +Y +Z’    M1

0

0

1

0

0

W’X’YZ’    m2

W + X +Y’ +Z    M2

0

0

1

1

1

W’X’YZ    m3

W + X +Y’ +Z’    M3

0

1

0

0

0

W’XY’Z’    m4

W + X’ +Y +Z    M4

0

1

0

1

1

W’XY’Z    m5

W + X’ +Y +Z’    M5

0

1

1

0

0

W’XYZ’    m6

W + X’ +Y’ +Z    M6

0

1

1

1

0

W’XYZ    m7

W + X’ +Y’ +Z’    M7

1

0

0

0

0

WX’Y’Z’    m8

W’ + X +Y +Z    M8

1

0

0

1

1

WX’Y’Z    m9

W’ + X +Y +Z’    M9

1

0

1

0

0

WX’YZ’    m10

W’ + X +Y’ +Z    M10

1

0

1

1

0

WX’YZ    m11

W’ + X +Y’ +Z’    M11

1

1

0

0

1

WXY’Z’    m12

W’ + X’ +Y +Z    M12

1

1

0

1

1

WXY’Z    m13

W’ + X’ +Y +Z’    M13

1

1

1

0

1

WXYZ’    m14

W’ + X’ +Y’ +Z    M14

1

1

1

1

0

WXYZ    m15

W’ + X’ +Y’ +Z’    M15


Step 2: Express the given function in sum of minterms as:

F = W’X’Y’Z + W’X’YZ + W’XY’Z + WX’Y’Z + WXY’Z’ + WXY’Z + WXYZ’

F =  m1 +  m3 + m5 + m9 + m12 + m13 +  m14

F = ∑ (1, 3, 5, 9, 12, 13, 14)

Step 3: Express the given function in product of maxterms as:

F = (W + X +Y +Z)(W + X +Y’ +Z)(W + X’ +Y +Z)(W + X’ +Y’ +Z)(W + X’ +Y’ +Z’)(W’ + X +Y +Z)(W’ + X +Y’ +Z)(W’ + X +Y’ +Z’)(W’ + X’ +Y’ +Z’)    

F =   M0 .  M2 . M4 .  M6 . M7 . M8 . M10 . M11 .  M15

F(W, X, Y, Z) = π (0, 2, 4, 6, 7, 8, 10, 11, 15)




EXAMPLE 4: Evaluate complement of a function from the following table using canonical forms.


X

Y

Z

Output

Minterms

0

0

0

0


0

0

1

0


0

1

0

1

X’YZ’    m2

0

1

1

1

X’YZ     m3

1

0

0

0


1

0

1

0


1

1

0

1

XYZ’     m6

1

1

1

1

XYZ     m7


The function is evaluated from the truth table as 

F = m2 + m3 + m6 + m7

The complement of the above function is calculated as;

F’ = (m2 + m3 + m6 + m7)’

F’ = m2’ + m3’ + m6’ + m7’ 

Mj’ = Mj

The complement function in maxterms form is written below;

F’ = M2 . M3 . M6 . M7

The complement function in minterms form is written below;

F’ = m0 + m1 + m4 + m5

F’(X, Y, Z) = ∑ ( 0, 1, 4, 5)


EXAMPLE 5: Express complement of the function in sum of minterms. F (A, B, C, D) = ∑ (0, 2, 6, 11, 13, 14) 

F = m0 + m2 + m6 + m11 + m13 + m14

As I discussed in my previous tutorial, the complement of the above function contains minterms that are missing in the original function.


F’ = m1 + m3 + m4 + m5 +m7 + m8 + m9 + m10 + m12 + m15

 

 F’ (A, B, C, D) = ∑ (1, 3, 4, 5, 7, 8, 9, 10, 12, 15)


Or 


It can evaluate from the following method as well;

F’ = (m0 + m2 + m6 + m11 + m13 + m14)’

F’ = m0’ . m2’ . m6’ . m11’ . m13’ . m14

mj’ = Mj


The complement function in product of maxterms;

F’ = M0 . M2 . M6 . M11 . M13 . M14


The complement function in sum of minterms;

F’ =  m1 + m3 + m4 + m5 +m7 + m8 + m9 + m10 + m12 + m15

 F’ (A, B, C, D) = ∑ (1, 3, 4, 5, 7, 8, 9, 10, 12, 15)

EXAMPLE 6: For each of the following function, determine domain of the function, SOP, standard SOP, and then convert standard SOP into standard POS

  1. (A + B)(C + B’)

Domain: A, B, C

SOP: 

Apply distributive law:

= AC + AB’ + BC + B.B’

B.B’ = 0

= AC + AB’ + BC


Standadrd SOP:

Look for non-standard term, and then look for missing variable

= AC (B + B’) + AB’(C + C’) + BC(A +A’)

= ABC + AB’C + AB’C + AB’C’ + ABC + A’BC

Remove those terms that appear twice.

= AB’C + AB’C’ + ABC + A’BC


Standard SOP To Standard POS:

There is 23 = 8 possible combinations. The standard SOP contains 4 combinations, the rest of the combinations are part of the standard POS.


You can write directly as well, but for ease, I draw a truth table and then write standard POS expression.



A

B

C

Output

Minterms

Maxterms

0

0

0



A + B + C

0

0

1



A + B + C’

0

1

0



A + B’ +C

0

1

1

1

A’BC


1

0

0

1

AB’C’


1

0

1

1

AB’C


1

1

0



A’ + B’ +C

1

1

1

1

ABC



The standard POS expression is 

= (A + B + C)(A + B + C’)(A + B’ +C)(A’ + B’ +C)

  1. (A + B’C)C

Domain: A, B, C

SOP:

= AC + B’CC = AC + B’C

C.C = C


Standadrd SOP:

Look for non-standard term, and then look for missing variable

= AC (B + B’) + B’C (A + A’)

= ABC + AB’C + AB’C + A’B’C

Remove those terms that appear twice.

= ABC + AB’C + A’B’C


Standard SOP To Standard POS:

There is 23 = 8 possible combinations. The standard SOP contains 3 combinations, the rest of the combinations are part of the standard POS.


You can write directly as well, but for ease, I draw a truth table and then write standard POS expression.


A

B

C

Output

Minterms

Maxterms

0

0

0



A + B + C

0

0

1

1

A’B’C


0

1

0



A + B’ + C

0

1

1



A + B’ + C’

1

0

0



A’ + B + C

1

0

1

1

AB’C


1

1

0



A’ + B’ + C

1

1

1

1

ABC



The standard POS expression is 

= (A + B + C)(A + B’ + C)(A + B’ +C’)(A’ + B +C)(A’ + B’ + C)


  1. (A + C)(AB + AC)

Domain: A, B, C

SOP:

= AAB + AAC + ABC + AAC

A.A = A

= AB + AC + ABC + AC

Remove those terms that appear twice.

= AB + AC + ABC


Standard SOP:

Look for non-standard term, and then look for missing variable

= AB (C + C’) + AC (B + B’) + ABC

= ABC + ABC’ + ABC + AB’C + ABC

Remove those terms that appear twice.

= ABC’ + ABC + AB’C


Standard SOP To Standard POS:

There is 23 = 8 possible combinations. The standard SOP contains 3 combinations, the rest of the combinations are part of the standard POS.


You can write directly as well, but for ease, I draw a truth table and then write standard POS expression.



A

B

C

Output

Minterms

Maxterms

0

0

0



A + B + C

0

0

1



A + B + C’

0

1

0



A + B’ + C

0

1

1



A + B’ + C’

1

0

0



A’ + B + C

1

0

1

1

AB’C


1

1

0

1

ABC’


1

1

1

1

ABC



The POS expression is

= (A + B + C)(A + B + C’)(A + B’ + C)(A + B’ + C’)(A’ + B + C)

  1. AB + CD(AB’ + CD)

Domain: A, B, C, D

SOP:

= AB + AB’CD + CD.CD

= AB + AB’CD + CD


Standard SOP:

Look for non-standard term, and then look for missing variable

= AB (C + C’) + AB’CD + (A + A’)CD

= ABC + ABC’ + AB’CD + ACD + A’CD


Again, look for non-standard terms,  and then look for missing variables.


= ABC(D + D’) + ABC’(D + D’) + AB’CD + ACD (B + B’) A’CD (B + B’)

= ABCD + ABCD’ + ABC’D + ABC’D’ + AB’CD + ABCD + AB’CD + A’BCD + A’B’CD

Remove those terms that appear twice.

= ABCD + ABCD’ + ABC’D + ABC’D’ + AB’CD + A’BCD + A’B’CD




A

B

C

D

Output

Minterms 

Maxterms

0

0

0

0



A + B + C +D

0

0

0

1



A + B + C + D’

0

0

1

0



A + B + C’ +D

0

0

1

1

1

A’B’CD


0

1

0

0



A + B’ + C +D

0

1

0

1



A + B’ + C +D’

0

1

1

0



A + B’ + C’ +D

0

1

1

1

1

A’BCD


1

0

0

0



A’ + B + C +D

1

0

0

1



A’ + B + C +D’

1

0

1

0



A’ + B + C’ +D

1

0

1

1

1

AB’CD


1

1

0

0

1

ABC’D’


1

1

0

1

1

ABC’D


1

1

1

0

1

ABCD’


1

1

1

1

1

ABCD



The POS expression is 

= (A + B + C +D)(A + B + C + D’)(A + B + C’ +D)(A + B’ + C +D)(A + B’ + C +D’)(A + B’ + C’ +D)(A’ + B + C +D)(A’ + B + C +D’)(A’ + B + C’ +D)


Popular Posts