The conversion between hexadecimal and binary number system is easy and straightforward task. Let's start.
Key Questions:
- Convert binary numbers into hexadecimal numbers
- Convert hexadecimal numbers into binary numbers
- How to convert binary fraction into hexadecimal fraction
- How to convert hexadecimal fraction into binary fraction
| 
Hexadecimal numbers | 
00 | 
01 | 
02 | 
03 | 
04 | 
05 | 
06 | 
07 | 
| 
Binary numbers | 
0000 | 
0001 | 
0010 | 
1111 | 
0100 | 
0101 | 
0110 | 
0111 | 
| 
Hexadecimal numbers | 
08 | 
09 | 
0A | 
0B | 
0C | 
0D | 
0E | 
0F | 
| 
Binary numbers | 
1000 | 
1001 | 
1010 | 
1011 | 
1100 | 
1101 | 
1110 | 
1111 | 
Binary to Hexadecimal Conversion:
Whenever converting from binary to hexadecimal numbers, start with making group of 4 bits. But why we use 4 bits? Because  4 bits represent 16 different values. Or the largest possible value for 4 bit number is 2n-1. For integers start making group of 4 from right to left.
Example 11100111101)2
0111 0011 1101
The above binary number is an 11 bit number. You make two 4 bits groups easily. For third group add zero at the leftmost position. So 3 groups of 4 bits has been made as shown above.
For fractional numbers, start making groups of 4 bits from left to right.
Example: 0.11100110111)2
0.1110 0110 1110
In the above fractional number you can easily make two groups of 4 bits, starting from left. While for third group of 4 bits we have to add a zero at the rightmost position as shown above. 
Let's solve some examples so that the you understand the conversion method.
Convert the given binary number into hexadecimal number Example#01: 1111111111)2 = ?)16
Making group of 4 bits
0011 1111 1111
| 
Binary number | 
0011 | 
1111 | 
1111 | 
| 
Hexadecimal number | 
3 | 
F | 
F | 
Answer 1111111111)2  = 3FF)16
Convert the given binary number into hexadecimal number Example#2: 110010111010.11111111)2=?)16
Making group of 4 bits
1100 1011 1010.1111 1111
| 
Binary number | 
1100 | 
1011 | 
1010 | 
. | 
1111 | 
1111 | 
| 
Hexadecimal number | 
C | 
B | 
A | 
. | 
F | 
F | 
Answer 110010111010.11111111)2=CBA.FF)16
Convert the given binary number into hexadecimal number Example#03: 11001100110011.111000111)2= ?)16
Making group of 4 bits
0011 0011 0011 0011.1110 0011 1000
Adding two 0s on leftmost side to complete a group of 4 bits. Adding three 0s on rightmost position in order to complete a group of 4 bits.
| 
Binary number | 
0011 | 
0011 | 
0011 | 
0011 | 
. | 
1110 | 
0011 | 
1000 | 
| 
Hexadecimal number | 
3 | 
3 | 
3 | 
3 | 
. | 
E | 
3 | 
8 | 
Answer  11001100110011.111000111)2= 3333.E38)16
Hexadecimal to Binary Conversion:
 When converting from Hexadecimal to binary number pick a single hexadecimal digit and convert it to equivalent binary number. One thing you have to keep in mind that binary number should be represent in 4 bit format. For example 
1)16=0001)2 right way
1)16=1)2 wrong way
Note: this is wrong while using this technique. Otherwise it is absolutely right.  
1)16=1)2
Convert the given hexadecimal number into binary number Example#01:3FF)16= ?)2
3)16=0011)2 
| 
Hexadecimal number | 
3 | 
F | 
F | 
| 
Binary number | 
0011 | 
1111 | 
1111 | 
Answer 3FF)16= 001111111111)2
Convert the given hexadecimal number into binary number Example#02:CBA.FF)16= ?)2
| 
Hexadecimal number | 
C | 
B | 
A | 
. | 
F | 
F | 
| 
Binary number | 
1100 | 
1011 | 
1010 | 
. | 
1111 | 
1111 | 
Answer CBA.FF)16= 110010111010.11111111)2
Convert the given hexadecimal number into binary number Example#03: 3333.E38)16= ?)2
| 
Hexadecimal number | 
3 | 
3 | 
3 | 
3 | 
. | 
E | 
3 | 
8 | 
| 
Binary number | 
0011 | 
0011 | 
0011 | 
0011 | 
. | 
1110 | 
0011 | 
1000 | 
Answer 3333.E38)16= 11001100110011.111000111)2
.jpg) 
 
.jpg) 
 
No comments:
Post a Comment