Evaluate Logic Expression|Boolean Function from The Given Logic Circuit
It is another important topic in the digital electronics course. You are provided with a logic circuit and you have to write its logic expression and truth table. It is also very easy, you just need to practice some questions.
Example # 1: A logic circuit is given, evaluate its Boolean/ logic expression:
\[A\]
\[B\]
\[A+B\]
\[(A+B) \oplus \bar A\]
0
0
0
1
0
1
1
0
1
0
1
1
1
1
1
1
Logic Expression: \[(A+B) \oplus \bar A\] Example # 2: A logic circuit is given, evaluate its Boolean/ logic expression: \[A\]
\[B\]
\[C\]
\[A.B\]
\[B+C\]
\[(A.B).(B+C)\]
0
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
1
0
0
1
1
0
1
0
1
0
0
0
0
0
1
0
1
0
1
0
1
1
0
1
1
1
1
1
1
1
1
1
Logic Expression: \[(A.B).(B+C)\] Example # 3: A logic circuit is given, evaluate its Boolean/ logic expression: \[A\]
\[B\]
\[\overline {A+B}\]
\[\overline {A.B}\]
\[\overline {A+B} \oplus \overline {A.B}\]
0
0
1
1
0
0
1
0
0
0
1
0
0
0
0
1
1
0
0
0
Logic Expression: \[\overline {A+B} \oplus \overline {A.B}\] Example # 4: A logic circuit is given, evaluate its Boolean/ logic expression: \[A\]
\[B\]
\[A.B\]
\[\overline {A.B}\]
\[\overline {(A.B) \oplus (\overline{A.B})}\]
0
0
0
1
0
0
1
0
1
0
1
0
0
1
0
1
1
1
0
0
Logic Expression: \[\overline {(A.B) \oplus (\overline{A.B})} \] Example # 5: A logic circuit is given, evaluate its Boolean/ logic expression: \[A\]
\[B\]
\[A.B\]
\[\bar A.B\]
\[(A.B)+(\bar A.B)\]
0
0
0
0
0
0
1
0
1
1
1
0
0
0
0
1
1
1
0
1
Logic Expression: \[(A.B)+(\bar A.B)\] Example # 6: A logic circuit is given, evaluate its Boolean/ logic expression and truth table:
\[A\]
\[B\]
\[C\]
\[A+B\]
\[\bar A+\bar C\]
\[(A+B)+(\bar A+\bar C)\]
0
0
0
0
1
1
0
0
1
0
1
1
0
1
0
1
1
1
0
1
1
1
1
1
1
0
0
1
1
1
1
0
1
1
0
1
1
1
0
1
1
1
1
1
1
1
0
1
Logic Expression: \[(A+B)+(\bar A+\bar C)\] Example # 7: A logic circuit is given, evaluate its Boolean/ logic expression:
\[A\]
\[B\]
\[C\]
\[A+B\]
\[\bar A.\bar B\]
\[\overline {\bar B \oplus C}\]
\[\overline {(A+B).(\bar A.\bar B)}\]
\[\overline {\overline {(A+B).(\bar A.\bar B)} + \overline {(\bar B \oplus C)}}\]
0
0
0
0
1
0
1
0
0
0
1
0
1
1
1
0
0
1
0
1
0
1
1
0
0
1
1
1
0
0
1
0
1
0
0
1
0
0
1
0
1
0
1
1
0
1
1
0
1
1
0
1
0
1
1
0
1
1
1
1
0
0
1
0
Logic Expression: \[\overline {\overline {(A+B).(\bar A.\bar B)} + \overline {(\bar B \oplus C)}}\] Example # 8: A logic circuit is given, evaluate its truth table : \[A\]
\[B\]
\[C\]
\[D\]
\[A+\bar B\]
\[\bar A+ B\]
\[C.D\]
\[\overline {(A+\bar B) \oplus (\bar A+B)}\]
\[\overline {\overline {(A+\bar B) \oplus (\bar A+B)} \oplus (C.D)}\]
0
0
0
0
1
1
0
1
0
0
0
0
1
1
1
0
1
0
0
0
1
0
1
1
0
1
0
0
0
1
1
1
1
1
1
1
0
1
0
0
0
1
0
0
1
0
1
0
1
0
1
0
0
1
0
1
1
0
0
1
0
0
1
0
1
1
1
0
1
1
0
0
1
0
0
0
1
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
1
0
1
0
0
0
1
1
0
1
1
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
1
0
1
1
1
0
1
0
1
1
1
0
1
1
0
1
0
1
1
1
1
1
1
1
1
1
Logic Expression: \[\overline {\overline {(A+\bar B) \oplus (\bar A+B)} \oplus (C.D)}\] Example # 9: A logic circuit is given, evaluate its Boolean/ logic expression: \[A\]
\[B\]
\[C\]
\[A.B\]
\[B.C\]
\[(A.B)+(B.C)\]
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
1
1
0
1
1
1
0
0
0
0
0
1
0
1
0
0
0
1
1
0
1
0
1
1
1
1
1
1
1
Logic Expression: \[(A.B)+(B.C)\]
Example # 10: A logic circuit is given, evaluate its Boolean/ logic expression:
\[A\]
\[B\]
\[\overline {A+B}\]
\[A.\bar B\]
\[\overline {(\bar A+B).(A.\bar B)}\]
0
0
1
0
1
0
1
0
0
1
1
0
0
1
1
1
1
0
0
1
Logic Expression: \[\overline {(\bar A+B).(A.\bar B)}\]Example # 11: A logic circuit is given, evaluate its Boolean/ logic expression: \[A\]
\[B\]
\[C\]
\[D\]
\[\overline {A.B}\]
\[\overline {B+C}\]
\[\overline {C\oplus D}\]
\[\overline {A.B}).(\overline {B+C})\]
\[(\overline {A.B}).(\overline {B+C})+ (\overline {C\oplus D})\]
0
0
0
0
1
1
1
1
1
0
0
0
1
1
1
0
1
1
0
0
1
0
1
0
0
0
0
0
0
1
1
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
0
1
1
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
1
1
0
1
0
1
1
0
0
0
1
1
1
1
1
1
0
0
1
1
1
0
1
1
1
0
1
0
1
0
0
0
0
1
0
1
1
1
0
1
0
1
1
1
0
0
0
0
1
0
1
1
1
0
1
0
0
0
0
0
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
1
0
1
Logic Expression: \[(\overline {A.B}).(\overline {B+C})+ (\overline {C\oplus D})\] Example # 12: A logic circuit is given, evaluate its Boolean/ logic expression:
\[A\]
\[B\]
\[C\]
\[\bar A+\bar B\]
\[\overline {B\oplus C}\]
\[(\bar A+\bar B).(\overline {B\oplus C})\]
0
0
0
1
1
1
0
0
1
1
0
0
0
1
0
1
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
0
0
1
1
1
0
1
0
Logic Expression: \[(\bar A+\bar B).(\overline {B\oplus C})\] Example # 13: A logic circuit is given, evaluate its Boolean/ logic expression: \[A\]
\[B\]
\[C\]
\[\bar A \oplus B\]
\[\overline {A \oplus B}\]
\[B+C\]
\[(\bar A \oplus B).\\(\overline {A \oplus B})\]
\[(\bar A\oplus B).\\(\overline {A \oplus B}).(B+C)\]
0
0
0
1
1
0
1
0
0
0
1
1
1
1
1
1
0
1
0
0
0
1
0
0
0
1
1
0
0
1
0
0
1
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
Logic Expression: \[(\bar A\oplus B).(\overline {A \oplus B}).(B+C)\] Example # 14: A logic circuit is given, evaluate its Boolean/ logic expression: \[A\]
\[B\]
\[\bar A.\bar B\]
\[\bar A+\bar B\]
\[(\overline {\bar A.\bar B)\oplus (\bar A+\bar B)}\]
0
0
1
1
1
0
1
0
1
0
1
0
0
1
0
1
1
0
0
1
Logic Expression: \[\overline {(\bar A.\bar B)\oplus (\bar A+\bar B)}\]
Example # 15: A logic circuit is given, evaluate its Boolean/ logic expression \[A\]
\[B\]
\[\overline {A+B}\]
\[\overline {A.B}\]
\[(\overline {A+B}). (\overline {A.B})\]
0
0
1
1
1
0
1
0
1
0
1
0
0
1
0
1
1
0
0
0
Logic Expression: \[(\overline {A+B}).(\overline {A.B})\]Example # 16: A logic circuit is given, evaluate its Boolean/ logic expression
\[A\]
\[B\]
\[C\]
\[A.C\]
\[C.B\]
\[\overline {(A.C).(C.B)}\]
0
0
0
0
0
1
0
0
1
0
0
1
0
1
0
0
0
1
0
1
1
0
1
1
1
0
0
0
0
1
1
0
1
1
0
1
1
1
0
0
0
1
1
1
1
1
1
0
Logic Expression: \[\overline {(A.C).(C.B)}\] Example # 17: A logic circuit is given, evaluate its Boolean/ logic expression
\[A\]
\[B\]
\[C\]
\[A+C\]
\[\bar A+B\]
\[(A+C) \oplus (\bar A+B)\]
0
0
0
0
1
1
0
0
1
1
1
0
0
1
0
0
1
1
0
1
1
1
1
0
1
0
0
1
0
1
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
1
1
0
Logic Expression: \[(A+C) \oplus (\bar A+B)\]Example # 18: A logic circuit is given, evaluate its Boolean/ logic expression \[A\]
\[B\]
\[C\]
\[D\]
\[A.\bar B\]
\[\overline {A.B}\]
\[(A.\bar B) \\ \oplus \overline {(A.B)}\]
\[B+\bar C\]
\[\overline {C+D}\]
\[(A.\bar B) \oplus \overline {(A.B)}\\+ (B+\bar C)\]
\[(A.\bar B) \oplus \overline {(A.B)} + \\(B+\bar C) \oplus \overline {(C+D)}\]
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
0
1
1
1
0
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
1
0
0
1
1
0
1
0
0
0
1
1
1
1
1
0
0
1
0
1
0
1
1
1
0
1
1
0
1
1
0
0
1
1
1
0
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
0
0
1
1
0
1
1
1
0
1
0
0
1
1
1
0
1
0
1
1
1
0
1
0
1
1
0
0
0
0
0
1
0
1
1
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
1
0
1
1
0
1
0
0
0
1
0
1
1
1
1
1
0
0
0
0
1
0
1
1
1
1
1
1
0
0
0
1
0
1
1
Logic Expression: \[(A.\bar B) \oplus \overline {(A.B)} + (B+\bar C) \oplus \overline {(C+D)}\]
VIDEO
No comments:
Post a Comment